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Noetherian Ring

Three equivalent definitions of a Noetherian ring:
® All ideals of the ring are finitely generated
® satisfies the ascending chain condition: all ascending chains of ideals must stabilize.

® every nonempty subset of ideals has a maximal element
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Examples

Let k be a field. Then it only has two ideals: the zero ideal and itself. Therefore k is
Noetherian.

Examples

k[x1, X2, -+ ,xn] is Noetherian where k is a field.

Examples

k[x1,x2,- - ,xn] is Noetherian where k is a field.

Examples

k[x1,x2,---] is not Noetherian because we can take the chain (x1) C (x1,x2) € - -+
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Group actions

Let S be a set and G be a group. A (left) group action of G on S is a map

GxS—=S

(g,5) — gs
such that 1gs = s and (gh)s = g(hs) for any g,h € G and any s € S.

5/12



Invariant rings
If we have a group G acting on a ring R by ring automorphisms which means that there is

a group homomorphism
G — AutR

then the invariant ring is

RC:={reR | gr=rforevery g € G}
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Let G be a finite group and let R be a Noetherian ring which contains Q. Then if G acts
on R, the invariant ring R€ is also Noetherian.

Reynold's Operator

Let p: R — RS be the map

1
o= 15 2 800

gei
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Emmy Noether's Theorem 1926

Let R = k[x1,--- , xn] where k is a field.
G is a finite subgroup of GL(n, k) Then R® is Noetherian.

GL(n,k)
GL(n, k) elements are n x n invertible matrices and act via matrix multiplication on
elements of R:

a1 - din X1

dnl - dnn Xn
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Extension of Nagarajan's example for positive characteristic p

Let p be a prime integer.
k= ]Fp(ab bla ap, b27 o )

R = k[x,y]
We define an automorphism ¢ : R — R where
® g(x)=x
e )

(v
® g(ap) =an+ yPnt1
[} 0'(

55)) = oy — 5%l

Py = apx — bpy

Then RC is not Noetherian under the group action of ().
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Properties of the automorphism
o generates a finite group from these properties:

° o(P,) =P,

® gP(ap) = a,

® gP(b,) = b
Thus

(o) =Z/pZ
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